作者:马琴等   来源:   发布时间:2023-12-19   Tag:   点击:
[麻进展]红麻对土壤重金属铅、镉污染修复潜力及响应的分子机制

  在诸多严重的环境污染问题中,土壤重金属污染已经成为亟待解决的问题之一。目前有多种土壤修复技术,而热门研究是植物修复技术,红麻是植物修复技术的理想材料。关于红麻与重金属的研究,大多都是红麻与重金属铅、镉污染下的研究,本综述是红麻对重金属铅、镉修复的潜力及响应的分子机制研究,通过以下五个方面进行分析:(1)铅、镉对红麻生长和生物产量的影响;(2)铅、镉污染对红麻的生理机制的影响;(3)红麻对重金属铅、镉污染的分子机制的影响;(4)铅、镉在植物体内的分布特征;(5)重金属铅、镉毒害对红麻的缓解措施。本综述为研究红麻响应重金属的胁迫分子机制研究提供一定的理论依据。

关键词红麻铅、镉污染植物修复技术分子机制

 

重金属一般是指(Cd)、铅(Pb)、锌(Zn)、铜(Cu)等,密度大于5.0g/cm3属于对环境造成污染、非生命活动所必须的金属元素(邓灿辉等2020)。重金属污染具有隐蔽性、不可逆性和长期性等特点,重金属在植物中大量积累,影响植物的生长发育,以及随食物链传递危害人类健康(陈兴兰和杨成波2010)。重金属来源广泛,工业上不合理排放的“三废”、农业上滥用化肥农药、生活污水排放等,导致农田土壤重金属含量超标,改变了土壤营养成分组成、结构和功能等,抑制微生物的生长和功能(李增强等2021)土壤重金属污染严重时,微生物很难降解,重金属的累积具有不可逆、残留周期长、毒性大等特点,会影响作物的产量和品质,还会进入食物链危害人类健康(李娟等2022)土壤修复是治理土壤污染的重要方法,对污染程度不同,可采取不同的治理方法(李文略等2022)。对重金属污染的土壤可采用物理修复、化学修复、生物修复等技术进行修复(杨雪等2022环境保护与循环经济42(8):55-57),因物理修复工作量大、易破坏土壤结构等,化学修复成本高、易造成二次污染等,植物修复就成了当前的研究热点(杨雪等2022环境保护与循环经济42(8):55-57)。植物修复是利用植物和根际微生物对环境中的污染物进行清除和转化,通过吸收效率、转换快的植物减少土壤中的重金属含量(Mukhtaretal.2019)。用于植物修复的作物应具备生物量大、对重金属胁迫有较高的耐性和最终不进入食物链传递等特点(Azeezetal.2013),利用植物对土壤中的重金属进行吸收、分解、固定等(Mukhtaretal.2019),具有成本低、效果好、无二次污染等优点(陈兴兰和杨成波2010邓勇等2016柳婷婷等2022)

红麻(HibiscuscannabinusL.)亦称洋麻、槿麻,是锦葵科(Malvaceae)木槿属(Hibiscus)一年生草本韧皮纤维作物,其生长周期短、生物量大为森林的3~4(Anetal.2017)、适应性广、CO2吸收率高,是森林的4(陶爱芬等2007)、耐性抗性强,具有较高的经济效益,针对各组织可有不同的用途,可用于造纸,吸附材料,麻地膜、饲料、纺织、汽车内饰、生物质能源等(陶爱芬等2007Anetal.2017安霞等2018Anetal.2022)。红麻巨大的生物量优势,为大气带来氧气,带走了重金属,收获的红麻纤维内重金属含量属于安全的国家标准,可加以利用,中国是世界上最大的红麻生产国之一(王国庆等2006Anetal.2019)。红麻具有强大的耐重金属的能力和积累能力(Chenetal.2021),且不参与食物链的流通,具备植物修复所需的特点(李丰涛等2013),因此红麻被认为是土壤重金属修复的理想材料(Anetal.2020李增强等2021)

红麻与重金属的研究,大多都集中于红麻在重金属铅、镉胁迫下的研究,主要是研究红麻的生理、生长及产量、分子机制以及土壤修复等方面(1)。本综述主要是关于红麻对重金属铅、镉修复的潜力及响应的分子机制研究,将从以下五个方面展开叙述。

研究方面

Study aspects

 

研究内容

Study content

文献

Reference

生理研究

Physiological research

 

通过水培的方法研究不同镉浓度胁迫红麻的脂质过氧化,非酶抗氧化物质含量及抗氧化酶活性的影响

The effects of different cadmium concentrations on lipid peroxidation, non-enzymatic antioxidant content and antioxidant enzyme activity of kenaf were studied by hydroponic culture

 

 

(邓勇等,2016)(Deng et al., 2016)

 

铅胁迫下红麻种子萌发期的生理响应,设置不同浓度的胁迫实验,测定相关的生理指标,如超氧化物歧化酶,过氧化氢酶,过氧化物酶,丙二醛含量等

The physiological response of kenaf seed germination under lead stress, set different concentrations of stress experiments, determination of the relevant physiological indicators, such as superoxide dismutase, catalase, peroxidase, malondialdehyde content.

 

 

 

 

 

(安霞等,2020)(An et al., 2020)

 

用桶栽试验研究不同浓度镉,铅胁迫下红麻生理生化特性丙二醛,脯氨酸,过氧化物酶,活超氧化物歧化酶的变化

Studies on the physiological and biochemical characteristics of kenaf under the stress of different concentrations of cadmium and lead in barrels malondialdehyde,proline,peroxidase and active superoxide dismutase

 

 

(李正文等,2013)

(Li et al., 2013)

 

设置不同浓度的铅,镉单一及复合处理,通过发芽和盆栽试验,研究其红麻种子萌发,生长,生理生化特性及铅,镉吸收的影响效应

The effects of different concentrations of lead and cadmium on seed germination, growth,

physiological and biochemical characteristics and absorption of lead and cadmium were studied by germination and pot experiments

 

 

 

 

(李兰平, 2012) (Li et al., 2012)

通过盆栽试验对铅,锌及其复合污染对红麻生理生化特性及产量的影响

Effects of lead, zinc and their combined pollution on physiological and biochemical characteristics and yield of kenaf by pot experiment

 

(韦兰洁, 2014) (Wei et al.,

2014)

 

设置不同铅浓度(01000mg/kg)与镉浓度(030mg/kg)对红麻种子进行组合处理测定种子发芽各项指标

Kenaf seeds were treated with different concentrations of lead(0~1000mg/kg)and cadmium(0~30mg/kg)to determine the germination indexes

 

(李兰平等,2012)

(Li et al., 2012

生长影响

Growth effects

 

以红麻为实验材料,探索提高红麻产量及增加红麻镉,,,铜积累最适宜的栽培方式

Taking kenaf as experimental material, the most suitable cultivation method for increasing kenaf yield and Cd, Pb, Zn, Cu accumulation was explored

 

(王路为, 2019) (Wang et al.,

2019)

 

用不同浓度的CdCl2溶液处理两个杂交种红麻种子,测定种子的发芽率,发芽势和发芽指数;同时采用不同浓度的CdCl2溶液处理两个红麻杂交品种幼苗,八天后测定幼苗的株高,茎粗,根长及其鲜重和干重的相对抑制率,以及叶片抗氧化酶活性和丙二醛含

Two hybrid kenaf seeds were treated with different concentrations of CdCl2  solution, and the germination rate, germination potential and germination index were measured. At the sametime, the seedlings of two kenaf hybrid varieties were treated with different concentrations of CdCl2 solution.After eight days, the plant height, stem diameter, root length, relative inhibition rate of fresh weight and dry weight, antioxidant enzyme activity and malondialdehyde content of leaves were measured

 

 

 

 

 

 

(贾瑞星等,

2019)

(Jia et al., 2019)

 

研究7个代表性的红麻品种,比较铅胁迫对其叶片叶绿素相对含量,生长及生物量的影响

Effects of lead stress on chlorophyll relative content, growth and biomass of seven representative kenaf varieties were studied

(安霞等, 2018) (An et al.,

2018)

 

用水培法对红麻幼苗进行300μmol/LCdCl2处理,测定幼苗农艺性状及镉含量;利用甲基化敏感扩增多态性技术分析镉胁迫下根系DNA甲基化水平,回收差异甲基化片段并克隆测序,采用qRT-PCR技术对DNA甲基化差异基因的表达量进行分析

Kenaf seedlings were treated with 300 μmol / L CdCl2 by hydroponic method, and the agronomic traits and cadmium content of seedlings were determined. The DNA methylation level of roots under cadmium stress was analyzed by methylation sensitive amplification polymorphism technique. The differentially methylated fragments were recovered and cloned and sequenced. The expression of DNA methylation differential

genes was analyzed by qRT-PCR

 

 

 

 

 

(卢海等, 2021) (Lu et al.,

2021)

 

 

红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥的研究

Expression analysis of kenaf abiotic stress response gene HCWRKY71 and transformation of Arabidopsis thaliana

 

 

(李辉等, 2021) (Li et al., 2021)

 

分子机制

Molecular

mechanism

采用水培法对红麻幼苗进行不同浓度PbCl2处理,测定幼苗农艺性状、根系活性氧含量和抗氧化酶活性等变化情况;利用甲基化敏感扩增多态性技术分析在600μmol/L铅胁迫条件下根系DNA甲基化水平变化,回收差异甲基化片段并克隆测序,采用qRT-PCR技术对DNA甲基化差异基因进行表达分析

The kenaf seedlings were treated with different concentrations of PbCl2 by hydroponic method, and the changes of agronomic traits, root active oxygen content and antioxidant enzyme activity were measured. The DNA methylation level of roots under 600 μmol / L lead stress was analyzed by methylation sensitive amplification polymorphism technique. The differentially methylated fragments were recovered and cloned and sequenced. The expression of differentially methylated genes was analyzed by qRT-PCR

 

 

 

 

 

 

(李增强, 2021) (Li et al., 2021)

 

铅胁迫下对红麻幼苗进行转录组分析,对转录因子(TF)编码基因进行了预测,分析幼苗生理性状

Transcriptome analysis of Kenaf seedlings under Lead stress, prediction of Transcription Factor (TF) coding genes and analysis of physiological characteristics of seedlings

 

 

(An et al.,

2020)

 

通过分析镉胁迫下红麻的转录组数据,克隆了一个红麻转录因子HcWRKY20序列,进一步对该基因进行克隆,并进行生物信息学分析及不同外界胁迫下的表达特性研究

By analyzing the transcriptome data of kenaf under cadmium stress, a kenaf transcription factor HcWRKY20 sequence was cloned, and the gene was further cloned, and bioinformatics analysis and expression characteristics under different external stresses were studied

 

 

 

 

(潘根等, 2018) (Pan et al.,

2018)

 

6个红麻品种进行中轻度镉污染农田土壤修复试验,对镉胁迫下红麻植株不同器官镉的累积,转运和富集特性进行了研究

Soil remediation experiments were carried out on six kenaf varieties in mild and moderate cadmium polluted farmland. The accumulation, translocation and accumulation characteristics of cadmium in different organs of kenaf under cadmium stress were studied

 

 

 

(黄玉敏等,

2018)

(Huang et al

2018)

 

修复土壤

Remediation of soil

 

对酸性多金属污染农田土壤进行了5年的红麻原位种植试验,研究不同改良剂对土壤改良的持效性及其对红麻生长的影响,探索红麻用于重金属污染土壤大田复 垦的可行性和有效性

A 5-year in-situ planting experiment of kenaf was carried out on acid multi-metal contaminated farmland soil to study the persistence of different amendments on soil improvement and their effects on kenaf growth, and to explore the feasibility and effectiveness of kenaf for field reclamation of heavy metal contaminated soil

 

 

 

 

 

(杨煜曦等,

2013)

(Yang et al.,

2013)

 

土壤改良剂和红麻联合修复对土壤中微生物群落功能的影响研究,利用BIOLOG技术对多金属污染土壤修复过程中微生物生态特征的变化进行分析

The effects of soil amendments and kenaf combined remediation on the function of microbial community in soil were studied. The changes of microbial ecological characteristics during the remediation of polymetallic contaminated soil were analyzed by BIOLOG technology

 

 

 

 

 

(杜瑞英, 2013) (Du, 2013)

 

通过盆栽实验研究土壤铅浓度对经济作物红麻生长、富集及转运铅的影响,将具有较强铅抗性的植物根际促生菌(PGPR)接种至红麻根际,考察铅胁迫下PGPR对红麻的促生作用,以探索利用PGPR辅助重金属耐性植物红麻对铅污染土壤进行植物稳定修复的可行性

A pot experiment was conducted to study the effects of soil lead concentration on the growth,  accumulation  and transport  of lead  in kenaf. The plant  growth promoting rhizobacteria (PGPR) with strong lead resistance was inoculated into the rhizosphere of kenaf to investigate the growth promoting effect of PGPR on kenaf under lead stress, so as to explore the feasibility of using PGPR to assist heavy metal tolerant plant kenaf to stably repair lead contaminated soil

 

 

 

 

 

(陈燕玫等,

2013)

(Chen et al.,

2013)

1铅、镉污染对红麻植株生长与生物产量的影响

重金属铅、镉会对红麻的生长产生一定的毒害作用,对红麻植株生长的影响主要表现为:随重金属铅、镉浓度的增加,生长缓慢、植株矮化、叶片萎蔫等症状,红麻的株高、茎粗、根长、总根长、总根系表面积等都受到抑制(Ajuwonetal.2010李兰平2012李丰涛2013安霞等2018Sultanaetal.2019)。在种子萌发阶段,铅、镉的处理浓度会抑制种子萌发生长,与铅、镉处理浓度呈正相关,总根长、总根系表面积、总根尖数呈负相关,发芽势、发芽率、发芽指数、活力指数等呈负相关(李兰平2012)。李增强等(2021)研究发现高浓度铅(400µmol/L及以上浓度)胁迫能显著抑制红麻幼苗的株高、茎粗、根长,安霞等(2018)还发现铅会影响红麻的叶片数、叶片长、及叶柄长,从而抑制植株的生长。当受镉胁迫时,对出苗率有显著影响,低浓度时(40mg/kg)促进,高浓度时(80mg/kg)抑制(Zhaoetal.2022),生长前期根长明显降低(Nizametal.2015)根系生长受到抑制,吸收水分及营养物质的速率下降,导致地上部生长受到抑制,随镉浓度的升高,红麻幼苗的株高、茎粗,根长抑制作用增强(贾瑞星2019)

导致红麻植株生长受抑制的原因可能是,铅、镉污染下,通过破坏叶片的细胞核,降低叶绿体中的含量,使叶卷曲、变黄,从而减弱光合作用抑制植株的生长;根部是破坏细胞超微结构,如:细胞空泡化、线粒体减少、细胞质中存在嗜睡颗粒(Chenetal.2021)影响红麻的根尖细胞结构,通过破坏细胞核影响RNA合成,降低硝酸还原酶、铁还原酶活性等,降低根系活力、增加根膜透性,严重损伤根系影响红麻的生(李丰涛2013王路为2019)

铅、镉污染通过影响红麻植株的生长,导致生物产量受到影响,表现为:地上部产量下降,地下部的根冠比下降,对地上部和根系生物量都有显著的抑制作用。随镉浓度的增加,红麻的生长和产量参数与镉浓度呈负相关(BadaandRaji2010),红麻植株表现为生长缓慢,产量下降(李兰平2012),镉浓度越高对红麻生长影响越大(李丰涛2013)铅浓度的增加,红麻根茎叶中的氮、磷、钾含量的积累表现为抑制作用(李兰平2012韦兰洁2014)

2铅、镉污染对红麻生理机制的影响

2.1铅、镉污染对红麻光合作用的影响

铅、镉污染对红麻光合作用的影响,表现为:叶片失绿、变黄、衰老等。邓勇(2016)研究发现镉对红麻植株的影响为叶片失绿,可加速叶片衰老。铅、镉胁迫都会影响叶片叶绿素的含量,对光合作用表现抑制作用。镉污染对光合作用的影响,一是通过影响钾离子、钙离子以及脱落酸代谢,抑制气孔开放(邓勇2016)

二是通过抑制叶绿素酸酯还原酶的活性和氨基-Y-酮戊二酸的合成,导致叶片叶绿素含量下降,与对照相比,叶绿素b含量降低可达75%(Arbaouietal.2014),影响光合作用(邓勇2016贾瑞星2019)。铅污染对红麻光合作用的影响,表现为叶片中的叶绿素合成受到明显抑制,叶绿素a、叶绿素b和总叶绿素含量降低,从而影响光合作用的过程(韦兰洁2014安霞等2018)。安霞等(2018)研究铅胁迫下不同红麻品种的生长及生物量影响,7个红麻品种都受铅胁迫影响,叶绿素合成受阻,叶绿素含量下降。

2.2铅、镉对红麻酶类物质与非酶物质的影响

2.2.1铅、镉对酶类物质的影响

铅、镉污染对红麻中的过氧化物酶(POD)、和过氧化氢酶(CAT)、超氧化物歧化酶(SOD)等产生一定的影响。铅、镉胁迫下红麻植株的POD活性总体呈下降趋势,SOD活性低浓度为促进作用,高浓度时都表现为抑制(李兰平2012李正文等2013)。镉污染时,随镉离子浓度的升高,幼苗的叶片PODCAT的酶活性等总体上呈先升高后降低的变化趋势(贾瑞星2019)。镉污染时,低浓度植物PODSODCAT的活性增强,三者含量增加等,可消除有毒物质,起保护作用(Dengetal.2017);当超过特定范围后,活性氧物质对抗氧化酶产生氧化损伤,导致三种酶的活性降低(邓勇2016Dengetal.2017贾瑞星2019)。铅胁迫对红麻种子萌发期SOD活性有抑制作用,CAT活性有促进作用。在萌发期,随铅浓度的增加,POD活性表现为先增加后减少的趋势,红麻种子体内的活性氧产生和清除的动态平衡受到了破坏,会引起膜脂过氧化反应(安霞等2020);幼苗根系中的铅含量、SOD活性与铅浓度呈正相关,随铅浓度的升高,CAT活性先升高后降低,POD活性先降低后升高(李增强等2021)

2.2.2铅、镉对非酶抗氧化物质的影响

红麻幼根的丙二醛(MDA)、抗坏血酸(ASA)含量与胁迫时间和镉浓度呈正相关(Dengetal.2017)MDA影响作物的生长,是膜脂过氧化过程中产生的物质。在镉胁迫时,MDA含量增加,膜质过氧化,细胞膜和细胞壁受到损伤(黄玉敏等2017),导致内容物质外泄,高镉浓度时(50mg/kg)MDA的量会减少,导致红麻幼苗的生理活性受到影响,严重时引起细胞死亡(贾瑞星2019)。低浓度镉胁迫下,植株通过合成AsA、谷胱甘肽(GSH)等非酶抗氧化物质来抵御镉胁迫,在一定程度上可缓解镉胁迫的伤害(邓勇2016)。铅处理时,MDA含量与铅浓度成呈正相关(安霞等2020)。铅、镉胁迫下红麻植株的MDA含量与铅、镉浓度呈正相关(李兰平2012李正文等2013)

3红麻对铅、镉污染分子机制的影响

铅、镉对红麻的分子机制方面的研究,主要是通过转录组测序、甲基化以及蛋白质组学进行分析。贾瑞星(2019)将福红与元江品种进行转录组测序,在镉胁迫下找到了525个差异表达基因,通过GO富集功能分析,发现大部分差异表达基因都富集到与重金属转运和胁迫等相关功能方面的通路上,比如抗氧化酶活性和锌铁结合转运等通路;进行KEGG代谢通路富集分析,发现差异表达基因主要富集的代谢通路为羧酸代谢途径、h氨基酸代谢通路、MAPK信号通路等。通过红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析,发现镉胁迫显著提高红麻幼苗根系的甲基化水平,有7个与抗性密切相关的DNA甲基化差异基因存在表达量的差异(卢海等2021)。李增强等(2021)通过对铅胁迫下红麻的DNA甲基化进行分析,结果表明铅胁迫下,红麻幼苗根系的DNA甲基化和全甲基化水平都显著降低,而根系的半甲基化水平提高。钙调素基因(HcCaM7)可调控红麻生长发育和响应非生物胁迫,乙酰化修饰可以促进HcCaM7蛋白发挥作用,该蛋白可能在红麻生长发育和在逆境胁迫发挥重要作用,乙酰化修饰能够对蛋白进行正调控(黄震等2022)。在中低浓度镉胁迫影响下,红麻叶片蛋白质组差异分析存在72个显著差异表达的蛋白点,LC-MS/MS质谱分析鉴定出50个差异蛋白点,其中有8个蛋白是参与光合作用、防御和运输的蛋白,在镉胁迫时上调表达,与镉耐性相关(李丰涛2013)

其他关于分子方面的研究,潘根等(2018)通过对红麻基因进行克隆,发现镉胁迫和外源胁迫激素如水杨酸等能够诱导HcWRKY20表达,表明该基因可能参与调控植物逆境胁迫反应。李辉等(2021)对红麻非生物逆境胁迫响应基因HcWRKY71进行分析,发现该基因是一个组成型且受重金属镉胁迫诱导表达的基因,在重金属镉胁迫下,该基因表达量随镉溶液浓度的增加而降低。

4铅、镉在红麻植株内的分布特征

不重金属在植物体内的富集部位不同,镉胁迫时红麻植株中的各组织镉的富集量不同,红麻具有较好的镉富集与转移机制(王玉富2015),部分研究的红麻富集系数及转运系数如下表(2)黄玉敏等(2018)研究6个红麻品种在农田富集试验,发现在镉富集表现为:叶>>>花。尹明等(2020)研究红麻7个品种红麻在重、轻度镉污染中的修复试验,镉的富集表现为:叶>>茎,叶的转移能力大于茎。通过红麻作物对土壤重金属吸收和积累、分布特性研究,发现红麻植株对镉的吸收和积累表现出:根/叶>籽粒>茎秆,且积累量不断下降(陈军2013)

铅元素主要富集在红麻植株的根、茎和种子,叶中较少(李丰涛等2013)。铅被植株吸收后,分布于红麻的根、茎等器官中,但在叶片中没有分布(Hoetal.2008)。陈军(2013)通过研究红麻作物对土壤重金属的吸收和积累特性,发现铅的吸收和积累表现为:根>茎秆>>籽粒,根部铅积累量最多,根部为铅积累的主要器官。少量固定在茎部,还有部分被传导至嫩茎、叶片,保证红麻植株继续生长(姚运法等2018a2018b)

2镉在红麻体内的分布

  

 

5铅、镉毒害红麻的缓解措施

铅、镉的毒害作用,可通过撒播,施加泥炭土、粉煤灰、白云石、有机肥+石灰石等改良剂,还原型谷胱甘肽(GSH)和外源硫化氢等措施可达到缓解的作用。撒播缓解铅、镉毒害作用,通过撒播和基肥等简化栽培技术提高红麻的产量,促进镉吸收效果(王路为等2019尹明等2020)。改良剂缓解铅、镉毒害的应用,泥炭土改良剂,可以降低铅在细胞器中的占比,使在植物体内活性较强的铅化学形态占比下降(龚紫薇等2018)。杨煜曦等(2013)通过施加粉煤灰和白云石等改良剂,利用化学-植物联合修复模式对污染土壤进行修复达到改良效果,因为其可提高土壤pH和络合降低重金属有效态,以促进红麻的生长,白云石不仅可降低土壤酸度,还为红麻的生长提供钙镁肥。对红麻施用有机肥,可提高单株生物产量和生物积累能力,

促进红麻对铅的吸收,85%分布在根部(郝冬梅等2019),植物积累更多的铅,利于含铅土壤的修复(Hoetal.2008)。杜瑞英(2013)通过施用有机肥+石灰石改良剂和红麻联合修复,发现改良剂可以显著提高土壤微生物活性,施用有机肥+石灰石可刺激根系分泌L-丝氨酸、4-羟基苯甲酸和L-精氨酸等碳源,使红麻增加土壤微生物活性的效果更显著,有助于重金属污染土壤的生态修复。陈燕玫等(2013)发现利用植物根际促生菌(PGRR)辅助红麻对铅污染土壤进行植物稳定修复,可促进红麻生长,将铅富集于根部,抑制铅向红麻地上部的转移。

还原型谷胱甘肽(GSH)对红麻镉毒害具有缓解效应。李丰涛(2013)通过研究红麻对外源GSH缓解镉毒的机理,不同浓度的GSH对幼苗的根长、株高、地上部鲜重及叶绿素含量均有明显的提高效果,当浓度为150μmol/L时,叶片的叶绿素含量基本恢复到对照水平,说明GSH起到了缓解镉对红麻的毒害作用。GSH参与光合作用、蛋白质合成、信号转导等等途径缓解镉胁迫响应,提高红麻耐镉能力(李丰涛2013)。外源硫化氢可以缓解红麻镉毒害,通过研究硫化氢缓解红麻重金属胁迫功能进行分析,发现外源硫化氢可以提高HcGSTHcMGL的耐镉能力,表明硫化氢信号通路参与了植物抵御镉胁迫的重要机制(邓勇2019)

6结语

红麻响应重金属胁迫,主要表现为影响红麻生长发育,色素含量、产量和光合作用等方面。红麻的不同组织对重金属的富集量不同,镉的吸收和积累表现为:根/叶>籽粒>茎秆,铅元素主要富集在红麻植株的根、茎和种子,叶中较少。铅、镉污染对红麻的酶类物质与非酶物质都有影响,在不同铅、镉浓度和红麻不同生长时期下,植株中PODSODCAT的含量有不同变化,MDAASA含量与胁迫时间和镉浓度呈正相关。铅、镉胁迫下红麻根系的甲基化水平显著提高,转录组差异表达基因主要富集抗氧化酶活性和锌铁结合转运等功能方面。通过撒播、添加改良剂、外加还原型谷胱甘肽、硫化氢等可以缓解铅、镉胁迫对红麻植株的伤害,促进红麻对铅、镉污染土壤的修复。利用红麻修复重金属污染土壤的研究主要集中于红麻农艺性状的影响,未来可以结合先进的技术,如基因工程、现代分子生物学、转基因技术等寻找耐重金属的基因或转运蛋白,在重金属污染中探寻转基因植物的应用(孙丽娟等2018),同时,充分利用植物、动物、微生物对重金属污染的土壤进行联合治理修复,最终达到高效、无害的修复效果(Mukhtaretal.2019),本文为探索红麻响应重金属胁迫胁迫的分子机制研究提供了良好的基础。

参考文献

[1] Ajuwon O.R., Bada B.S., and Olujimi O.O., 2010, Growth and antioxidative responses to excess cadmium in kenaf (Hibiscus cannabinus L.), Fresenius. Environ. Bull, 19: 2637-2643.

[2] An X., Chen J., and Jin G.R., 2020, Transcriptome profiling of kenaf (Hibiscus cannabinus L.) under plumbic stress conditions implies the involvement of NAC transcription factors regulating reactive oxygen species-dependent programmed cell death. Peer J., 8: e8733.

[3] An X., Chen J., Liu T.T., Li W.L., Luo X.H., and Zou L.N., 2022, Transcriptomic and metabolic profiling of kenaf stems under salinity stress, Plants, 11(11): 1448.

[4] An X., Jin G.R., Luo X.H., Chen C.L., Li W.L., and Zhu G.L., 2020, Effect of Pb stress on physiological and biochemical tndexes of kenaf seeds during germination, Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 18(7): 2376-2381. (安霞, 金关荣, 骆霞虹, 陈常理, 李文略, 朱关林, 2020, 铅胁迫对红麻种子萌发期生理生化的影响, 分子植物育种, 18(7): 2376-2381.)

[5]An X., Jin G.R., Luo X.H., Ma G.Y., Jin L., Shi X.H., Chen C.L., Li W.L., Zhou Y., Pan X.Y., and Zhu G.L., 2018, effects of lead stress on growth and biomass of different kenaf varieties, Zhejiang Nongye Kexue (Zhejiang Agricultural Sciences), 59(3): 390-392. (安霞, 金关荣, 骆霞虹, 马广莹, 金亮, 史小华, 陈常理, 李文略, 周媛, 潘晓韵, 朱关林, 2018, 铅胁迫对不同红麻品种 生长及生物量的影响, 浙江农业科学, 59(3): 390-392.)

[6]An X., Jin G.R., Zhang J.Y., Ma G.Y., Dai L.J., Jin L., Luo X.H., Chen C. L., Shi X.H., Zhou J., Wei W., Li W.L., Chen C., Deng G., and Zhu G.L., 2017, Research progress on tissue culture and genetic transformation of kenaf (Hibiscus cannabinus), Open Life Sciences, 12(1): 465-472.

[7]Arbaoui S., Campanella B., Rezgui S., Paul R., and Bettaieb T., 2014, Bioaccumulation and photosynthetic activity response of kenaf (Hibicus cannabinus L.) to cadmium and zinc, Greener J. Agri. Sci., 4(3): 91- 100.

[8]Azeez J.O., Hassan O.A., Adesodun J.K., and Arowolo T.A., 2013,  Soil metal  sorption characteristics and its influence on the comparative effectiveness of EDTA and legume intercrop on the phytoremediative abilities of maize (Zea mays),mucuna (Mucuna pruriens), okra (Abelmoschus esculentus), and kenaf (Hibiscus cannabinus), Soil and Sediment Contamination: An International Journal, 22(8): 930-957.

[9]Bada B.S., and Raji K.A., 2010, Phytoremediation potential of kenaf (Hibiscus cannabinus L.) grown in different soil textures and cadmium concentrations, African Journal of Environmental Science and Technology, 4(5): 250-255.

[10]Chen J., 2013, Study on the absorption and accumulation characteristics of heavy metals by jute and kenaf, Thesis forM.S., Agricultural College, Guangxi University, Supervisor: MoL.Y., pp.4-6. (陈军, 2013, 黄麻/红麻作物对土壤重金属的吸收和积累特性研究.硕士学位论文,广西大学农学院,导师:莫良玉, pp:4-6.)

[11]Chen P., Li Z.Q., Luo D.J., Jia R.x., Lu H., Tang M.Q., Hu Y.L.,Yue J., and Huang Z., 2021, Comparative transcriptomic analysis reveals key genes and pathways in two different cadmium tolerance kenaf (Hibiscus cannabinus L.) cultivars, Chemosphere, 263:128211.

[12]Chen X.L., and Yang C.B., 2010, Soil heavy metal pollution, ecological effect and phytoremediation technology, Nongye Huanjing yu Fazhan (Agricultural Environment and Development), 27(3): 58-62. (陈兴兰, 杨成波, 2010, 土壤重金属污染、生态效应及植 物修复技术, 农业环境与发展, 27(3): 58-62.)

[13]Chen Y.M., Bai J., Yang Y.X., Wang S.Z., Yang X.H., and QiuR.L., 2013, Phytoremediation of Pb polluted soil by kenaf with assistance of plant growth promoting rrhizobectrium (PGPR), Nongye Huanjing Kexue Xuebao (Journal of Agro-Environment Science), 32(11): 2159-2167. (陈燕玫, 柏珺,  杨煜曦, 王诗忠, 杨秀虹, 仇荣亮, 2013, 植物根际促生菌辅助红麻修复铅污染土壤, 农业环境科学学报, 32(11): 2159-2167.)

[14]Dend Y., Huang S.Q., Li J.j., Tang H.J., Li H., Chen A.G., Li D.f., and Chen J.X., 2016, Physiological response in the roots of kenaf (Hibiscus Cannabinus) seedings under cadmium stress, Zhongguo Maye Kexue (Plant Fiber Sciences in China), 38(2): 89-94. (邓勇, 黄思齐, 李建军, 唐慧娟, 李辉, 陈安国, 李德芳, 陈金湘, 2016, 镉胁迫下红麻幼根的生理响应, 中国麻业科学,38(2): 89-94.)

[15]Deng C.H., Tang Q., Dai Z.G., Yang Z.M., Cheng C.H., Xu Y., Chen X.J., Liu C., and Chen J.Q., 2020, Differential adsorption performance and mechanism of leaf-used jute germplasm for heavy metal removal, Nongye Ziyuan yuHuanjing Xuebao (Journal of Agricultural Resources and Environment), 37(3): 438-444. (邓灿辉, 唐蜻, 戴志刚, 杨泽茂, 程超华, 许英, 陈小军, 刘婵, 陈基权, 粟建光, 2020, 不同叶用黄麻种质对重金属吸附的差异及其机制分析, 农业资源与环境学报, 37(3): 438-444.)

[16]DengY., 2016, The study of physiological response mechanism in Kenf under cadmium stress conditions. Thesis for M.S., Agricultural College, Hunan Agricultural University, Supervisor: Chen J.X., Li D.F., pp.8-26. (邓勇. 2016, 红麻耐镉生理响应相关机制的 研究. 硕士学位论文, 湖南农业大学农学院, 导师: 陈金湘; 李德芳; pp.8-26.)

[17]Deng Y., 2019, Function analysis of hydrogen sulfide-mediated alleviation of cadmium stress in Kenaf (Hibiscus cannabinus L.)seedlings. Dissertation for ph.D., Institute of Hemp Science, Chinese Academy of Agricultural Sciences, Supervisor: Li D.F., PP:25-36. (邓勇. 2019, 硫化氢缓解红麻重金属镉胁迫功能分析. 博士学位论文, 中国农业科学院麻类研究所, 导师: 李德芳, pp: 25-36.)

[18]Deng Y., Li D.F., Huang Y.M., and Huang S.Q., 2017, Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings[J]. Industrial Crops and Products, 107: 453-457.

[19]Du R.Y., 2013, Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbial community, Shengtai yu Nongcun Huanjing Xuebao (Journal of Ecology and Rural Environment), 29(1): 70-75. (杜瑞英, 2013, 土壤改良剂和红麻联合修复对多金属污染土壤中微生物群落功能的影响, 生态与农村环境 学报, 29(1): 70-75.)

[20]Gong Z.W., Chen Y.H., Chen J.Q., Zhang Q.N., OuD.L., and Liu J., 2018, Study on the tolerance of two kenaf varieties under improved lead-zinc slag, Zhongguo Maye Kexue (Plant Fiber Sciences in China), 40(4): 175- 182. (龚紫薇, 陈永华, 陈基权, 张倩妮, 欧丹玲, 柳俊, 2018, 2 个红麻品种在改良铅锌矿渣下的耐性研究. 中国麻业科学, 40(4): 175- 182.)

[21]Hao D.M., Qiu C.S., Long S.H., Guo Y., Wang H., and Wang Y.F., 2019, Study progress in bast and leaf fiber crop remediation of farmland contaminated by heavy metals, Zhongguo Maye Kexue (Plant Fiber Science in China), 41(1): 36-41. (郝冬梅, 邱财生, 龙松华, 郭媛, 王慧, 王玉富, 2019,  麻类作物在重金属污染耕地修复中的应用研究进展. 中国麻业科学, 41(1): 36-41.)

[22]Ho W.M., Ang L.H., and Lee D.K., 2008, Assessment of Pb uptake, translocation and immobilization in kenaf (Hibiscus cannabinus L.) for phytoremediation of sand tailings, Journal of environmental sciences, 20(11): 1341- 1347.

[23]Huang Y.M., DengY., LiD.F., Zhao L.N., Tang H.J., Huang S.Q., 2017, Effect of growth and physiology - chemistry of hemp (Cannabis sativa) seedlings under cadmium stress, Zhongguo Maye Kexue (Plant Fiber Science in China), 39(5): 227-233. (黄玉敏, 邓勇, 李德芳, 赵立宁, 唐慧娟, 黄思齐. 2017, 镉胁迫对大麻幼苗生长及生理生化影响, 中国麻业科学, 39(5): 227-233.)

[24]Huang Y.M., Yin M., Gong Y.C., DengY., Li J.J., Tang H.J., Chen A.G., Zhao L.N., Pan G., Chang L., Li D.F., and Huang S.Q., 2018, Remediation of mildly and moderately cadmium contaminated farmland by different varieties of kenaf (Hibiscus cannabinus).Plant Fiber Sciences in China, 40(6): 264-269.(黄玉敏, 尹明, 巩养仓, 邓勇, 李建军, 唐慧娟, 陈安国, 赵立宁, 潘根, 常丽, 李德芳, 黄思齐, 2018, 不同红麻品种修复中轻度镉污染农田试验, 中国麻业科学, 40(6): 264-269.)

[25]Huang Z., Wu Q.J., Chen C.N., Wu X., Cao S., Zhang H., Yue J., HuY.L., Luo D.J., Li Y., Liao C.J., Li R., and Chen P., 2022, Role of calmodulin gene (HcCaM7) and its protein acetylation is involved in kenaf response to abiotic stress, Zuowu Xuebao (Acta Agronomica Sinica), 49(2): 402-413. (黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏, 2022, 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用, 作物学报, 49(2): 402-413.)

[26]JiaR.X., 2019, Comparative morphological and physiological responses and differential gene discovery in kenaf (Hibiscus Cannabinus L.) under cadmium stress, Thesis forM.S., Agricultural College, Guangxi University, Supervisor: Chen P., pp.5-8. (贾瑞星, 2019, 镉胁迫下两个红麻品种形态、生理响应及差异基因发掘, 硕士学位论文, 广西大学农学院, 导师: 陈鹏, pp.5-8.)

[27]Jin R.J., Ding X.C., Tang D.F., Wei F., Chang M.M., Li Z.Q., Liang Z.C., and Chen P., 2019, Effects of seed germination and seedling growth of two homonuclear-heterocytoplasmic kenaf hybrid cultivars under cadmium stress, Nanfang Nongye Xuebao (Journal of Southern Agriculture), 50(8): 1688- 1694. (贾瑞星, 丁鑫超, 汤丹峰, 韦范, 常蒙蒙, 李增强, 梁志辰, 陈鹏. 2019, 镉对两 个同核异质红麻杂交种种子萌发及幼苗生长的影响, 南方农业学报, 50(8): 1688- 1694.)

[28]Li F.T., 2013, The study on accumulation characteristics of heavy metals and alleviating mechanism of exogenous GSH in Kenaf. Dissertation for Ph.D., Fujian Agriculture and Forestry University, Supervisor: Qi J.M., pp.3- 14. (李丰涛, 2013, 红麻对重金属 的吸收特征及外源 GSH 缓解镉毒的机理研究, 博士学位论文, 福建农林大学, 导师: 祁建民, pp.3- 14.)

[29]Li F.T., Qi J.M., Niu S.H., Fang P.P., Lin L.H., Tao A.F., and Xu J.T., 2013, Heavy metal concentrations and bioaccumulation of kenaf (Hibiscus cannabinus) growing in farmland of south-central part of Fujian Province, Fujian Nonglin Daxue Xuebao (Journal of Fujian Agriculture and Forestry University (Natural Science Edition)), 42(2): 127- 133. (李丰涛, 祁建民, 牛韶华, 方平平, 林荔辉, 陶爱芬, 徐建堂, 2013, 闽中南红麻种植田土壤重金属含量及其富集特征, 福建农林大学学报(自然科学版), 42(2):127- 133.)

[30]Li H., Li D.F., Deng Y., Pan G., Chen A.G., Zhao L.N., and Tang H.J., 2021, Expression analysis of abiotic  stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis, Zuowu Xuebao (ActaAgronomica Sinica), 47(6): 1090- 1099. (李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟, 2021, 红麻非生物逆境胁迫响应基因HCWRKY71 表达分析及转化拟南芥. 作物学报, 47(6): 1090- 1099.)

[31]Li J., Yan X.Y., WU X., and Li L., 2022, Research progress on the remediation of cadmium contaminated farmland soil by fiber crops, Zhongguo Nongye Keji Daobao (Journal of Agricultural Science and Technology), 24(11): 171- 178. (李娟, 闫旭宇, 吴香, 李玲, 2022, 纤维类作物对农田土壤镉污染修复的研究进展, 中国农业科技导报, 24(11):171- 178.)

[32]Li L. P., 2012, Physiological response in the roots of Kenaf(Hibiscus Cannabinus) seedings under cadmium stress. Thesis for M.S., Agricultural College, Guangxi University, Supervisor: Li Z.W., PP: 4-20. (李兰平. 2012,  红麻对 Pb Cd 的耐受性及其生理生 化基础研究. 硕士学位论文, 广西大学农学院, 导师: 李正文, pp: 4-20.)

[33]Li L.P., Li Z.W., Yang H.X., Zhou Q., Zhou.R.Y., and Li Z.G., 2012, Effects of lead and cadmium on seed germination and growth of kenaf (Hibiscus cannabinus L.), Nanfang Nongye Xuebao (Journal of Southern Agriculture), 43(9): 1291- 1296. (李兰平, 李正文, 杨海霞, 周琼, 周瑞阳, 李志刚, 2012, 铅、镉对红麻种子萌发生长的影响. 南方农业学报, 43(9): 1291- 1296.)

[34]Li W.l., Liu T.T., Luo X.H., Chen C.L., An X., Zou L.N., and Zhu G.L., 2022, Characteristics of cadmium tolerance and accumulation of 8 kenaf varieties at seedling stage, Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 20(17): 5816-5822. (李文略, 柳婷婷, 骆霞虹, 陈常理, 安霞, 邹丽娜, 朱关林, 2022, 8个红麻品种苗期对重金属镉耐性及富集特征, 分子植物育种, 20(17):5816-5822.)

[35]Li Z.Q., Ding X.C., Lu H., HuY.L., Yue j., Huang Z., Mo L.Y., Chen L., Chen T., and Chen P., 2021, Physiological characteristics and DNA methylation analysis under lead stress in kenaf (Hibiscus cannabinus L.), Zuowu Xuebao (ActaAgronomica Sinica), 47(6): 1031- 1042. (李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 2021, 铅胁迫下红麻生理特性及 DNA 甲基化分析, 作物学报, 47(6): 1031- 1042.)

[36]Li Z.W., Li L.P., Zhou Q., Li Z.G., and Zhou R.Y., 2013, Effect of different concentrations of Cd and Pb on the stress-resistance physiological characteristics of Hibiscus cannabinus L., Hubei Nongye Kexue (Hubei Agricultural Sciences), 52(15): 3568-3571.(李正文, 李兰平, 周琼, 李志刚, 周瑞阳, 2013, 不同浓度 Cd Pb 对红麻抗逆生理特性的影响, 湖北农业科学,  52(15): 3568-3571.)

[37]Liu T.T., Luo X.H., Li W.L., Zhu G.L., and An X., 2022, Difference of Cd uptake and accumulation in different flax varieties. Zhejiang Nongye Kexue (Zhejiang Agricultural Sciences), 63(9): 2030-2032, 2045. (柳婷婷, 骆霞虹, 李文略, 朱关林, 安霞. 2022, 不 同亚麻品种重金属 Cd 吸收积累的差异, 浙江农业科学, 63(9): 2030-2032, 2045.)

[38]Lu H., Li Z.Q., Tang M.Q., Luo D.J., Cao S., Yue J., HuY.L., Huang Z., Chen T., and Chen P., 2021, DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf, Zuowu Xuebao (ActaAgronomica Sinica), 47(12): 2324- 2334. (卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏, 2021, 红麻 DNA 甲基化响应镉胁迫及甲 基化差异基因的表达分析, 作物学报, 47(12): 2324-2334.)

[39]Mukhtar Y., Galalain A.M., Abdu K., Tukur  S., Bashir R.A., Abdulkadir A.I., and Habib A.A., 2019, A comprehensive review on  phytoremediation potentials of Hibiscus cannabinus Linn.(Kenaf): mechanisms, benefits and prospects, American Journal of Natural Sciences, 2(1): 10-23.

[40]Nizam M.U., Zaman M.W., Rahman M.M., and Hossain M.M., 2015, Cadmium remediation potentials of jute, kenaf and mestaat early growing stage, J. Agrofor. Environ, 9: 69-74.

[41]Pan G., Zhao L.N., Chen A.G., Li J.J., Huang S.Q., tang H.J., Chang L., Deng Y., and Li D.F., 2018, Cloning and expression analysis of a WRKY transcript factor HcWRKY20 in kenaf, Zhongguo Maye Kexue (Plant Fiber Sciences in China), 40(4): 145- 150. (潘根, 赵立宁, 陈安国, 李建军, 黄思齐, 唐慧娟, 常丽, 邓勇, 李德芳, 2018, 红麻HcWRKY20 基因的克隆与表达特征分析, 中国麻业科学, 40(4): 145- 150.)

[42]Sultana R., Akhter L., and Zaman M.W., 2019, Tolerance of Lead and Chromium toxicity and their effect on kenaf and mesta at germination stage, Eco-friendly Agril. J, 12(9): 67-73.

[43]Sun L.J., Qin Q., Song K., Qiao H.X., and Xue Y., 2018, The remediation and safety utilization techniques for Cd contaminated farmland soil: a review, Shengtai Huanjing Xuebao (Ecology and Environmental Sciences), 27(7): 1377- 1386. (孙丽娟, 秦秦, 宋科, 乔红霞, 薛永, 2018, 镉污染农田土壤修复技术及安全利用方法研究进展, 生态环境学报, 27(7): 1377- 1386.)

[44]Tao A.F., Zhang X.C., and Qi J.M., 2007, Research progress and industrialization prospect of comprehensive utilization on kenaf, Zhongguo Maye Kexue (Plant Fiber Science in China), (1): 1-5. (陶爱芬, 张晓琛, 祁建民, 2007, 红麻综合利用研究进展与 产业化前景, 中国麻业科学, (1): 1-5.)

[45]Wang G.Q., Li M., Luo Y.M., Song J., and Zhao Q.G., 2006, Plant uptake and accumulation of Cu and Cu-EDDS by kenaf (Hibiscus Cannabinus L.), Turang (Soils), (5): 626-631. (王国庆, 李敏, 骆永明, 宋静, 赵其国, 2006, 红麻对 Cu Cu-EDDS 的吸收 和富集, 土壤, (5): 626-631.)

[46]Wang L., 2019, Study on the difference of Kenaf growth and heavy metal accumulation under different cultivation measures and strain.Thesis for M.S., Agricultural College, Guangxi University, Supervisor: Gu M.H., PP. 5- 10. (王路为. 2019, 不同栽培措施下及不同品系的红麻生长和重金属积累差异研究. 硕士学位论文, 广西大学农学院, 导师: 顾明华, pp:5- 10.)

[47]Wang L.W., Tian X., WenY.H., Xu H.Z., Chen P., Zhou R.Y., and He B., 2019, Effects of cultivation techniques on kenaf growth and absorption of cadmium, Xinan Nongye Xuebao (Southwest China Journal of Agricultural Sciences), 32(5): 995- 1003. (王路为, 田旭, 温玉环, 许海钊, 陈鹏, 周瑞阳, 何冰, 2019, 栽培技术对红麻生长及吸收镉的影响, 西南农业学报, 32(5): 995-1003.)

[48]Wang Y.F., 2015, Review of jute and kenaf application in remediation of arable lands contaminated by heavy metals, Hunan Nongye Kexue (Hunan Agricultural Sciences), (8): 49-52. (王玉富, 2015, 黄麻、红麻在重金属污染耕地修复中的应用研究进展, 湖南农业科学, (8): 49-52.)

[49]Wei L.J., 2014, Effect of physio-biochemical characteristics and yield of kenaf under single and combined pollution of Pb and Zn, Thesis for M.S., Agricultural College, Guangxi University, Supervisor: Mo L.Y., pp.9-40. (韦兰洁. 2014, 铅、锌及其复合污染 对红麻生理生化特性及产量的影响. 硕士学位论文, 广西大学农学院, 导师: 莫良玉, pp.9-40.)

[50]Wei L.J., Mo.L.Y., Hou .D.J., Zhou R.Y.,Fan Z.L., and Pan D.L., 2014, Tolerance and absorption characteristics of lead and zinc by kenaf, Guizhou Nongye Kexue (Guizhou Agricultural Sciences), 42(10): 240-24. (韦兰洁, 莫良玉, 侯定基, 周瑞阳, 范稚莲, 潘达龙, 2014,  红麻对土壤中 Pb Zn 的耐受性及吸收特性, 贵州农业科学, 42(10): 240-24.)

[51]Yang Y.X., Lu H.L., Zhan S.S., Deng T.H.B., Lin Q.Q., Wang S.Z., Yang X.H., and ChouR.L., 2013, Using kenaf (Hibiscus cannabinus) to reclaim multi-metal contaminated acidic soil, Yingyong Shengtai Xuebao (Chinese Journal of Applied Ecology), 24(3): 832- 838. (杨煜曦, 卢欢亮, 战树顺, 邓腾灏博, 林庆祺, 王诗忠, 杨秀虹, 仇荣亮. 2013, 利用红麻复垦多金属污染酸化土壤. 应用生态学报, 24(3): 832-838.)

[52]Yao Y.F., Lai Z.F., Lin B.Z., Lian D.M., and Hong J.J., 2018, Screening test of cadmium tolerant varieties by different jute and kenaf, Fujian Rezuo Keji (Fujian Science Technology of Tropical Crops), 43(3): 1-4. (姚运法, 赖正锋, 林碧珍, 练冬梅, 洪建基. 2018a, 耐镉黄、红麻品种筛选试验, 福建热作科技, 43(3): 1-4.)

[53]Yao Y.F., Lin B.Z., Lian D., Lai Z.F., and Hong J.J., 2018, Evaluation on absorbing effectiveness of jute and kenaf resources to heavy metal lead, Fujian NongyeKeji (Fujian Agricultural Science and Technology), (6): 1-4. (姚运法, 林碧珍, 练冬梅, 赖正锋, 洪建基, 2018b, /红麻资源对重金属铅吸收效果评价, 福建农业科技, (6): 1-4.)

[54]Yin M., Tang H.J., Yang D.W., Deng Y., Li D.F., Zhao L N., and Huang S.Q., 2020, Comparative repair test of different varieties of kenafin heavily and lightly cadmium-contaminated farmland, Nongye Huanjing Kexue Xuebao (Journal of Agro-Environment Science), 39(10): 2267-2276. (尹明, 唐慧娟, 杨大为, 邓勇, 李德芳, 赵立宁, 黄思齐, 2020, 不同品种红麻在重度与轻微 镉污染耕地的修复试验, 农业环境科学学报, 39(10): 2267-2276.)

[55]Zhao X.L., Guo Y., and Papazoglou E.G., 2022, Screening flax, kenaf and hemp varieties for phytoremediation of trace element- contaminated soils, Industrial Crops and Products, 185: 115121.

 

文章摘自:刘琴,安霞,杜光辉.红麻对土壤重金属铅、镉污染修复潜力及响应的分子机制[J/OL].分子植物育种,1-9[2023-11-29]http://kns.cnki.net/kcms/detail/46.1068.S.20231016.1518.030.html.


更多阅读